Controlling a Robotic Arm with a Patient’s Intentions

Controlling a Robotic Arm with a Patient’s Intentions

Neural prosthetic devices implanted in the brain’s movement center, the motor cortex, can allow patients with amputations or paralysis to control the movement of a robotic limb—one that can be either connected to or separate from the patient’s own limb. However, current neuroprosthetics produce motion that is delayed and jerky—not the smooth and seemingly automatic gestures associated with natural movement. Now, by implanting neuroprosthetics in a part of the brain that controls not the movement directly but rather our intent to move, Caltech researchers have developed a way to produce more natural and fluid motions.

In a clinical trial, the Caltech team and colleagues from Keck Medicine of USC have successfully implanted just such a device in a patient with quadriplegia, giving him the ability to perform a fluid hand-shaking gesture and even play “rock, paper, scissors” using a separate robotic arm.

“When you move your arm, you really don’t think about which muscles to activate and the details of the movement—such as lift the arm, extend the arm, grasp the cup, close the hand around the cup, and so on. Instead, you think about the goal of the movement. For example, ‘I want to pick up that cup of water,'” Andersen says. “So in this trial, we were successfully able to decode these actual intents, by asking the subject to simply imagine the movement as a whole, rather than breaking it down into myriad components.”

For example, the process of seeing a person and then shaking his hand begins with a visual signal (for example, recognizing someone you know) that is first processed in the lower visual areas of the cerebral cortex. The signal then moves up to a high-level cognitive area known as the posterior parietal cortex (PPC). Here, the initial intent to make a movement is formed. These intentions are then transmitted to the motor cortex, through the spinal cord, and on to the arms and legs where the movement is executed.

High spinal cord injuries can cause quadriplegia in some patients because movement signals cannot get from the brain to the arms and legs. As a solution, earlier neuroprosthetic implants used tiny electrodes to detect and record movement signals at their last stop before reaching the spinal cord: the motor cortex.

The recorded signal is then carried via wire bundles from the patient’s brain to a computer, where it is translated into an instruction for a robotic limb. However, because the motor cortex normally controls many muscles, the signals tend to be detailed and specific. The Caltech group wanted to see if the simpler intent to shake the hand could be used to control the prosthetic limb, instead of asking the subject to concentrate on each component of the handshake—a more painstaking and less natural approach.

Robotic Arm with Cup
Robotic Arm with Cup (Image: Caltech)

In the clinical trial, designed to test the safety and effectiveness of this new approach, the Caltech team collaborated with surgeons at Keck Medicine of USC and the rehabilitation team at Rancho Los Amigos National Rehabilitation Center. The surgeons implanted a pair of small electrode arrays in two parts of the PPC of a quadriplegic patient. Each array contains 96 active electrodes that, in turn, each record the activity of a single neuron in the PPC. The arrays were connected by a cable to a system of computers that processed the signals, decoded the intent of the subject, and controlled output devices that included a computer cursor and a robotic arm developed by collaborators at Johns Hopkins University.

After recovering from the surgery, the patient was trained to control the computer cursor and the robotic arm with his mind. Once training was complete, the researchers saw just what they were hoping for: intuitive movement of the robotic arm.

“For me, the most exciting moment of the trial was when the participant first moved the robotic limb with his thoughts. He had been paralyzed for over 10 years, and this was the first time since his injury that he could move a limb and reach out to someone. It was a thrilling moment for all of us,” Andersen says.

“It was a big surprise that the patient was able to control the limb on day one—the very first day he tried,” he adds. “This attests to how intuitive the control is when using PPC activity.”

The patient, Erik G. Sorto, was also thrilled with the quick results: “I was surprised at how easy it was,” he says. “I remember just having this out-of-body experience, and I wanted to just run around and high-five everybody.”

Image: CalTech       Explore further: About this Robotic Arm                 Source: CalTech

Leave a Reply

Your email address will not be published. Required fields are marked *